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ABSTRACT

In 1937, Lothar Collatz defined the function C : Z+ → Z+ as C(x) = 3x + 1 when x is odd and C(x) = x
2

when x is even. He conjectured that repeated computation of this function would eventually result in the value
1. Specifically, for every x ∈ Z+, (C ◦C ◦ . . . ◦C)(x) = 1, denoted C(n)(x) = 1. As of 2025, this conjecture
still remains unproven, after 88 years. In this research article, we employ a novel method using sequences and
binary strings to offer a simplification of the conjecture and identify some novel patterns within Collatz orbits,
which may potentially lead to a solution. First, we rigorously prove that the validity of the Collatz conjecture
for any x ∈ Z+ is logically equivalent to the existence of positive integers y, k such that R(y)(x) = 2k, where
R(x) is three times x plus its binary least significant bit (LSB). The involvement of powers of two motivates
an approach using binary representations of x. Specifically, we define a property, ‘Changes,’ as the number of
pairs of consecutive unequal digits in a binary string (when this goes to 1 or 0, the conjecture is true for x). For
all x ∈ Z+, we show that Changes(B(x)) ≤ Changes(x), where B(x) is x plus its binary LSB. We finally
prove that, for any k-digit (binary) x, we have Changes(x) >

⌊
2k−1

3

⌋
=⇒ Changes(C(x)) < Changes(x).

We also prove that this is the best possible bound (effectively restricting the growth of Changes). We also
elaborate on the distribution of Changes(C(x)) plotted against Changes(x). These results may be used to
further analyze the conjecture or analogues, improving the estimates of growth rates of ν2 of values in R orbits;
this is a step towards proving the complete conjecture.
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1 Introduction
Attributed to Lothar Collatz in 1937, the Collatz conjecture (also 3x+ 1 problem, Ulam Conjecture, Syracuse
Problem, etc.) defines the function C : Z+ → Z+ as follows:

Let C : Z+ → Z+ be the function:

C(x) :=

{
3x+ 1, if x ≡ 1 (mod 2)
x
2 , if x ≡ 0 (mod 2) .

The conjecture states that for all x ∈ Z+, there exists some n ∈ Z+ such that C(n)(x) = 1, where C(n)

refers to the n-fold composition of C with itself.

For example, when x = 3, we have C(x) = 10, C(2)(x) = 5, C(3)(x) = 16, etc., with C(7)(x) = 1.

Generally, such patterns of subsequent growth and decline when the Collatz function is applied tend to
be unpredictable (earning them the name ‘Hailstone sequences’) and lending to their applications in encryp-
tion and pseudo-random number generators. Thus, analyzing patterns within Collatz orbits or Collatz analogs
(which instead use ax+ b, a, b ∈ Z+) is of importance.

Over the years, many different approaches have been utilized to investigate the Collatz conjecture. Some of
the most related include Kaufman’s [2] representation of Collatz orbits for x ∈ Z+ as binary strings, tracking
the length of C(k)(x). Ren, Li, Xiao, and Bi also expressed the Collatz conjecture as an algorithm of H(x) = x

2
and TPO(x) = 3x + 1, for more efficient computation [5]. There have also been other efforts to analyze the
size of numbers within the Collatz orbit for some x ∈ Z+, determining the minimum k ∈ Z+ for C(k)(x) < x
(see for reference [6]). Although they are still significant works, some of the limitations of prior literature
include the ’unpredictability’ of the Collatz orbits: namely, they cannot characterize a well-defined end-state
or stopping time given a particular initial number, often due to the use of the conditional definition. Our work,
which is an original research article, instead considers properties of binary strings and will delve into a novel
analysis of the property Changes and the interesting results that arise when looking at Collatz orbits through
this lens (which may eventually lead to a solution).

1.1 Notation
The following is an overview of the mathematical terminology used in the paper. New definitions introduced
in this work are presented later in the main body.

(i) Z+ are the positive integers. Z≥0 denotes Z+ ∪ {0}.

(ii) For any function f and any k ∈ Z+ we denote

f (k) ≡
k times︷ ︸︸ ︷

f ◦ f ◦ · · · ◦ f .

(iii) We use {x} for any real x to refer to the fractional part of x, with {x} = x− ⌊x⌋.

(iv) The orbit of some x ∈ Z+ under a function f is the sequence orbit(x) = (x, f(x), f (2)(x), . . .).

(v) The 4-2-1 cycle refers to the only known cycle in the Collatz function: when C(k)(x) = 4, C(k+1)(x) =
2, C(k+2)(x) = 1, C(k+3)(x) = 4, and so on.
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(vi) We say OCC(x) is TRUE or OCC(x) holds if and only if x satisfies the Original Collatz Conjecture
(there exists n ∈ Z+ such that C(n)(x) = 1).

1.2 Organization and Structure
The rest of the article is organized as follows. Section 2 delves into a detailed and rigorous proof using se-
quences to show the aforementioned simplification of the conjecture to the algorithm R. Section 3 then pro-
poses analyzing R-orbits using Changes; following this, we prove a multitude of patterns in the behavior of
Changes. Sections 4, 5, 6 are the conclusion, future work, and acknowledgements respectively. An appendix
is provided, with proofs of additional results and the code used to verify our claims.

The specific contributions and claims made in Sections 2 and 3 are described in the following list:

(I) Algorithmic Representation of the Conjecture

(i) In order to allow the operations of multiplication and addition and division to be applied separately,
we are motivated to express C(n)(x) as a product of the nth terms of sequences (αn(x))n∈Z≥0

and
(βn(x))n∈Z≥0

, with C(n)(x) = αn(x)βn(x). Each sequence is defined to “perform” a different
operation (see Definition 1 for full details).

(ii) Then, we can derive general rules for αn(x) and βn(x). Hence, we reduce the conjecture to an
equation and a repeated algorithm R involving two steps: multiplication by three (A : Z+ → Z+)
and then the addition of the largest dividing power of two (B : Z+ → Z+). We formally prove that
OCC(x) is true if and only if the algorithm ever reaches a power of two (i.e. there exist positive
integers (y, k) such that R(y)(x) = 2k).

(II) Binary and Changes

(i) Motivated by the involvement of powers of two, we investigate binary strings resulting from the pre-
vious algorithm (and relating to string growth rates as a result). Thus, we introduce Changes(x) for
x ∈ Z+ to explore how the conjecture may be satisfied, noting that Changes(B(x)) ≤ Changes(x)
for all x ∈ Z+, where B(x) is x plus its largest dividing power of two.

(ii) For all k-digit (binary) integers x, it is proven that if Changes(x) >
⌊
2k−1

3

⌋
, then we have

Changes(A(x)) < Changes(x).

(iii) We show other interesting patterns that arise when plotting Changes(x) against Changes(C(x)).

2 Algorithmic Representation of The Conjecture
We begin by “separating” the division and multiplication followed by addition operations, by creating se-
quences whose nth-term products give C(n)(x).
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2.1 Constructing Sequences
To do this, we are motivated to construct sequences (αn(x))n∈Z≥0

and (βn(x))n∈Z≥0
for all x ∈ Z+, such that

αn(x)βn(x) = C(n)(x). This allows a general rule to be identified, allowing for the Collatz Conjecture to be
proven equivalent to simpler equations and an algorithm.

Definition 1. Define sequences (αn)n∈Z≥0
and (βn)n∈Z≥0

. For any x ∈ Z+, let α0(x) = x and β0(x) = 1.

αn+1(x) =

{
3αn(x) +

1
βn(x)

, if αn(x)βn(x) ≡ 1 (mod 2)

αn(x), if αn(x)βn(x) ≡ 0 (mod 2) .

βn+1(x) =

{
βn(x), if αn(x)βn(x) ≡ 1 (mod 2)
βn(x)

2 , if αn(x)βn(x) ≡ 0 (mod 2) .

By definition, it can be shown that αn+1(x)βn+1(x) = C(αn(x)βn(x)) for all x, n ∈ Z+. Therefore,
αn(x)βn(x) = C(n)(x) follows by a straightforward induction on n.

Note that β0 = 1. It is only ever divided by 2. Thus, (βn) is a sequence of reciprocals of non-decreasing
powers of two. This motivates the below definition.

Definition 2. Let x be some positive integer. Define sequence (ki(x))i∈Z≥0
such that

kn(x) = log2

(
1

βn(x)

)
, for all n ∈ Z≥0 .

By induction with base case k0 = 0 and the recursive definition in Definition 1, it can be proven that
ki(x) ∈ Z≥0 for all integers i ≥ 0 (because βn(x) is only divided by 2). Hence, (ki(x)) is also a non-
decreasing sequence.

Theorem 2 will derive a general rule for αn(x) (using the recursion from Definition 1). The sequences
(ji(x)), (ai(x)) and set S(x) (all defined below) will be used to clarify the following proofs.

Definition 3. For all x ∈ Z+, define the set S(x) := {i | i ∈ Z+, αi(x) ̸= αi+1(x)}.

Remark 4. Observe that S(x) must be infinite. If not, there exists a maximum value p, which implies
C(q+1)(x) < C(q)(x) for all q > p (as for all x ∈ Z+, C(x) ̸= x). This would be infinite descent in
Z+, which is impossible.

Definition 5. Let x be any positive integer. By the well-ordering principle, S(x) can be ordered in an increas-
ing sequence. Let (ji(x))i∈Z+ be the elements of S(x) in increasing order. Thus, the sequence (ji(x))i∈Z+

represents the indices at which the sequence (αn(x))i∈Z≥0
changes.

Definition 6. Let x be any positive integer. Define the sequence (ai(x))i∈Z+ such that ai(x) := kji(x)(x) for
all i ∈ Z+. As the sequences (ji(x))i∈Z+ and (ki(x))i∈Z≥0

are non-decreasing, (ai(x))i∈Z+ is non-decreasing.
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Observe that, by definition, the sequence (ai(x))i∈Z+ gives the values of kn when αn increases. This will
be used in following proofs.

Example: x = 7, see Table 1.

Table 1: Example values of α, β, a, j, k series for x = 7

n C(n)(7) αn(7) βn(7) kn(7) jn(7) an(7)

0 7 7 1 0

1 22 22 1 0 0 0

2 11 22 1
2 1 2 1

3 34 68 1
2 1 4 2

4 17 68 1
4 2 7 4

5 52 208 1
4 2 11 7

Remark 7. Given some positive integer x, a relationship can be made between ai(x) and ji(x), with ai(x) =
ji(x)− i+ 1. This results from how we chose to define these series. As this will not be used in the rest of the
argument, a proof of this can be found in Theorem 11 in the Appendix.

Theorem 1 will now prove that the sequence (ai(x))i∈Z+ is increasing. This will be used in the later proof of
Theorem 5.

Theorem 1. Let x be any positive integer. The sequence (ai(x))i∈Z+ is strictly increasing for all i ∈ Z+.

Proof of Theorem 1. First, fix a value of x.

For clarity, we implicitly refer to ai(x) as ai, ji(x) as ji, αn(x) as αn, and βn(x) as βn.

Note that the sequences (ji) and (ki) are both non-decreasing and ai = kji , so the sequence (ai)i∈Z+ is
also non-decreasing (ai ≤ ai+1 for all i ∈ Z+).

We prove the desired result by contradiction, supposing that there exists i ∈ Z+ such that ai = ai+1 (this
assumption is sufficient since the sequence is already non-decreasing).

This implies kji = kji+1
.

As {ki} is non-decreasing and j(i+1) > ji, we have kji = k(ji)+1 = ... = kj(i+1)
.

This implies that βji = βji+1 = ... = βji+1 and so αji < αji+1 < ... < αji+1 , as they cannot change at
the same time (Definition 1).

By the definition of ji (as ji represents the indices at which αi(x) ̸= αi+1(x)), we have αji+1
< αji+1+1,

which implies C(ji+1)(x) ≡ 1 (mod 2).
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From the definition of αn, this implies C(ji)(x) ≡ C(ji+1)(x) ≡ · · · ≡ C(ji+1)(x) ≡ 1 (mod 2).

But because ji+1 > ji and ji + 1 ≤ ji+1, we have C(ji)(x) ≡ C(ji+1)(x) ≡ 1 (mod 2). This is impossi-
ble (as C(x) maps odd integers to even integers).

This is a contradiction and concludes the proof.

2.2 Expression as an Equation
We begin by proving that all x ∈ Z+ with OCC(x) being TRUE must also satisfy an equation:

Remark 8. Theorem 2 proves one direction of implication. The other direction (the converse) is proven later
(by Theorem 5) with an analogous equation (2).

In the following theorem, we introduce the sequence (mn(x))i∈Z+ that will be used later in the algorithm
we construct.

Theorem 2. Let x be any positive integer. Then, there exists a non-decreasing sequence of positive integers
(mn(x))i∈Z+ such that

αn(x) = 3(· · · 3(3(3x+ 2a1(x)) + 2a2(x)) + 2a3(x)) · · · ) + 2amn(x)(x)

for all n ∈ Z+ with n > j1(x).

Remark 9. Before we prove the theorem, it can be noted that for all n ∈ Z+ with n ≤ j1(x), we have
αn(x) = n, which trivially satisfies this statement. Henceforth, it will be implied that n > j1(x).

Proof of Theorem 2. This will be proven inductively.

Let us fix some x ∈ Z+. For clarity, we shall implicitly refer to ai(x) with ai, ji(x) with ji, and mn(x)
with mn.

Base case (n = j1 + 1): For n = j1 + 1, we have αn(x) = 3αn−1(x) + 2kj1 . By the recursive definition,
αj1 = x. Hence, αn(x) = 3x+ 2a1 (with mn = 1).

Inductive step (n ≥ j1 + 1, n ∈ Z+): Assuming αn(x) = 3(· · · 3(3(3x+ 2a1) + 2a2) + 2a3) · · · ) + 2amn ,
then αn+1(x) = 3(· · · 3(3(3x+ 2a1) + 2a2) + 2a3) · · · ) + 2

am(n+1) .

Proof of the inductive step. We will consider the possible values for αn+1(x) (cases 1 and 2).

Case 1: αn+1(x) = αn(x): this immediately satisfies the required statement, with mn+1 = mn.

Case 2: αn+1(x) ̸= αn(x).
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By definition, αn+1(x) ̸= αn(x) if and only if n ∈ S(x).

For all i ∈ Z+, α(ji+1)(x) = α(ji+2)(x) = · · · = αj(i+1)
(x) ̸= αj(i+1)+1(x).

(∗) As ji < ji+1 for all i ∈ Z+ and S(x) ⊆ N is infinite, there exists some smallest ji ≥ n. Denote this jp.
By the above, αn(x) = αjp(x).

As αn+1(x) ̸= αn(x), we have αn+1(x) = 3αjp(x) +
1

βjp (x)
.

As 1
βjp (x)

= 2kjp = 2ap , αn+1(x) = 3αn(x) + 2ap , which satisfies this equation.

Similarly to (*) (noting that ji gives indices at which αi(x) changes) we can observe that 2amn = 2ap−1 .
As ai strictly increases, mn = p− 1 and p = mn+1 = mn + 1.

Therefore, if αn = 3(· · · 3(3(3x + 2a1) + 2a2) + 2a3) · · · ) + 2amn , then αn+1 = 3(· · · 3(3(3x + 2a1) +
2a2) + 2a3) · · · ) + 2amn+1 .

This concludes the proof of the inductive step.

Observe that mn+1 ∈ {mn,mn + 1} for all n ∈ Z+ and mi ≥ 1 for all valid i ∈ Z+ (with i > j1(x)).
Thus, (mn(x))i∈Z+ is a non-decreasing sequence of positive integers.

By the induction above, it can be seen that αn = 3(· · · 3(3(3x + 2a1) + 2a2) + 2a3) · · · ) + 2amn for all
n ∈ Z+.

This concludes the proof of Theorem 2.

The above definition of (mn(x))n∈Z+ is used in the following Corollaries.

Corollary 3. Let x be a positive integer. If, for some n ∈ Z+, C(n)(x) = 1 (OCC(x) is TRUE), then we have

3(· · · 3(3(3x+ 2a1(x)) + 2a2(x)) + 2a3(x)) · · · ) + 2amn(x)(x) = 2kn(x) (1)

Proof. If C(n)(x) = 1, then αn(x)βn(x) = 1.

By Theorem 2, αn(x) = 3(· · · 3(3(3x+ 2a1(x)) + 2a2(x)) + 2a3(x)) · · · ) + 2amn(x)(x) = 1
βn(x)

= 2kn(x).

This immediately concludes the proof.

Remark 10. We can also show that, from our choice of definitions, kn(x) = n − mn(x) for all x, n ∈ Z+.
This proof is not directly relevant to the paper. Hence, it is provided in Appendix 13.

Corollary 4. Let x be some positive integer. For all k ∈ Z+, there exists some positive integer n for which
mn(x) = k.
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Proof. Let us fix some x.

As mn+1(x) ∈ {mn(x),mn(x) + 1}, it suffices to show there exists no maximum value in the sequence
(mn(x)). This is proven by contradiction.

Suppose there existed such a value, denoted mp(x).

For all positive integers n > p, this implies αn+1(x) = αn(x) and therefore C(n+1)(x) = C(n)(x)
2 .

As C(n+1)(x) is finite and C(k) ∈ Z+ for all k ∈ Z+, this is impossible (a contradiction).

This concludes the proof.

Remark 11. Theorem 2 implied Equation (1) from OCC(x). The converse is proven in Theorem 5. The
proof works by showing that the satisfaction of Equation (2), analogous to (1), is only possible with complete
adherence to the ‘rules’ of C(n). This proves that (2) being true and OCC(x) are actually logically equivalent
(the crux of the simplification).

Theorem 5. Let x be a positive integer. If, for some k ∈ Z+ and some increasing sequence b1, b2, · · · , bm ∈
Z+, we have

3(· · · 3(3(3x+ 2b1) + 2b2) + 2b3) · · · ) + 2bm = 2k (2)

then OCC(x) is TRUE.

Remark 12. Note that equation (2) is a converse of (1), as this equation is always satisfied when OCC(x) is
TRUE, as ai(x) is the required value for all bi.

Proof of Theorem 5. Let us fix an x.

Outline: This statement is proved by first showing that sequences (ωn)n∈Z≥0
and (τn)n∈Z≥0

(defined below)
can always be constructed such that there exists some p ∈ Z+ with ωpτp = 1. It is then proven that
ωn = αn(x) and τn = βn(x), allowing us to prove that OCC(x) is TRUE.

For this x and sequence (bi), let (ωn)n∈Z≥0
be a finite sequence of positive integers.

ω0 = x

ωn+1(x) =

{
3ωn(x) + 2bi , if n = bi + i− 1 for any i ∈ Z+

ωn(x), otherwise

For this x, let (τn)n∈Z≥0
be a sequence of rational numbers.

τ0 = 1

τn+1 =

{
τn, if n = bi + i− 1 for any i ∈ Z+

τn
2 , otherwise
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Claim 5.1. By this definition, we have

ωbm+m = 3(· · · 3(3(3x+ 2b1) + 2b2) + 2b3) · · · ) + 2bm

Proof of Claim 5.1. As bi < bi+1 for all integers 1 ≤ i < m, there are exactly m distinct values of n
such that ωn+1 ̸= ωn, by the recursive definition of ωn.

Therefore, this expansion is a direct consequence of the recursive definition of (ωn).

This concludes the proof of Claim 5.1.

Define p ∈ Z+ as the least positive integer for which τp = 1
2k

(with k given in the Theorem statement).
This is always well defined, as shown below.

Claim 5.2. There always exists some p ∈ Z+ such that τp = 1
2k

, with p > bm +m.

Proof of Claim 5.2. By the definition of (τn), it can be seen that τbm+m = 1
2bm

.

From the theorem hypothesis, as 3(· · · 3(3(3x + 2b1) + 2b2) + 2b3) · · · ) + 2bm = 2k, we must have
2bm < 2k.

Note that bm is the maximum of (bi). As τn+1 = τn
2 for all integers n > bm + m (a geometric se-

quence with ratio 1
2 ) and both bm, k ∈ Z+. As τbm+m ≥ 1

2bm
there exists at least one positive integer

p > bm +m such that τp = 1
2k

.

Hence, there is some least p.

This concludes the proof of Claim 5.2.

Note that ωn+1 = ωn = 2k for all n ≥ bm +m (as bm is the maximum term of (bi)). Also note that
ωbm+m = 3(· · · 3(3(3x+ 2b1) + 2b2) + 2b3) · · · ) + 2bm = 2k, by the hypothesis of Theorem 5. Thus,
by Claim 5.2, there exists a p > bm +m for which ωpτp = 1.

The following claims will prove that ωn = αn(x) and τn = βn(x) for all n ≤ p ∈ Z+.

Claim 5.3. ωnτn ∈ Z+ for all n ∈ Z+ with n ≤ p.

Proof of Claim 5.3. Given ω0 = x ∈ Z+ and ωn+1 ∈ {3ωn+2bn , ωn}, it is always true that ωn ∈ Z+,
for all n ∈ Z+.

The proof will proceed by contradiction.
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Suppose there exists some q ≤ p ∈ Z+ such that ωqτq /∈ Z+.

Then there exist some c ∈ Z≥0 and d ∈ Z+ such that {ωqτq} = { 3c

2d
}.

Thus, for any n ∈ Z+ with n ≥ q, there exist some c ∈ Z≥0 and d ∈ Z+ such that {ωnτn} = { 3c

2d
}.

Thus, for all n ≥ q ∈ Z+, ωnτn /∈ Z+.

By the hypothesis of Theorem 5 and Claim 5.2, it must be true that ωpτp = 1. However, as q ≤ p, this
is a contradiction.

This concludes the proof of Claim 5.3.

Note that by definition, if and only if τn+1 = τn, then ωn+1 ̸= ωn. This will be used in the following
proof.

Claim 5.4. For all n ∈ Z+ with n < p, if ωnτn ≡ 1 (mod 2), then τn+1 = τn.

Proof of Claim 5.4. This will be proved by contradiction.

For some n < p ∈ Z+ where ωnτn ≡ 1 (mod 2), suppose τn+1 = τn
2 .

As τn+1 ̸= τn, by the recursive definition, ωn+1 = ωn. Given ωnτn ≡ 1 (mod 2), {ωn+1τn+1} = 1
2

As n+ 1 ≤ p, this leads to a contradiction by Claim 5.3.

This concludes the proof of Claim 5.4.

Claim 5.5. For any n < p ∈ Z+, if ωnτn ≡ 0 (mod 2), then ωn+1 = ωn.

Proof of Claim 5.5. This can also be proved through contradiction.

For some n < p ∈ Z+ where ωnτn ≡ 0 (mod 2), suppose ωn+1 ̸= ωn.

By the recursive definition of (ωn) and (τn), note that ωn+1τn+1 ≡ 1 (mod 2)

By Claim 5.4, ωn+1 ̸= ωn+2.

Thus, ωn < ωn+1 < ωn+2.

This implies there exists some i ∈ Z+ such that bi = bi+1, since bi + i− 1 + 1 = bi+1 + (i+ 1)− 1.

This is a contradiction as the sequence (bi) is required to be strictly increasing.

This concludes the proof of Claim 5.5.
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From the above, we see that Claims 5.3, 5.4, and 5.5 prove that ωn = αn(x) and τn = βn(x) for all
n ≤ p ∈ Z+.

By Claim 5.2, there exists some p ∈ Z+ such that ωpτp = 1, this implies αp(x)βp(x) = 1 and
C(p)(x) = 1. Thus, OCC(x) is TRUE.

This concludes the proof of Theorem 5.

Therefore, by Theorems 2 and 5, the satisfaction of (2) for some x ∈ Z+ and any n ∈ Z+ is logically
equivalent to OCC(x).

2.3 Analysing powers of 2
Definition 13. For all x ∈ Z+, let Γ(x) := 2k, where k is the largest integer for which 2k|x.

Noting the structure of the equation, we are motivated to define the following functions A, B, and R:

Definition 14.

(i) Define A : Z+ → Z+ such that A(x) = 3x

(ii) Define B : Z+ → Z+ such that B(x) = x+ Γ(x)

(iii) Finally, define the composition R : Z+ → Z+ such that R(x) = B(A(x))

Remark 15. This definition of B is analogous to defining B(x) = x + 2a1(x), as a1(x) = log2(Γ(x)). The
proof of this can be found in Theorem 12 in the Appendix. This result will be used in a subsequent proof.

Remark 16. It must be noted that as B is applied repeatedly, the exponent of the added power of two will
increase. Specifically, Γ(B(n+1)(x)) > Γ(B(n)(x)) for all x, n ∈ Z+. This follows from the definition of Γ
(and is easier to see in binary).

Theorem 6. Let x be a positive integer for which OCC(x) is TRUE. For all positive integers n > j1(x), we
have αn(x) = R(mn(x))(x).

Remark 17. Much like Theorem 2, this is trivially true for n ≤ j1(x) as R(0)(x) = αn(x) = x.

The proof of Theorem 6 will first require Lemma 7 to be proven.

Lemma 7. Let x, n be any positive integers for which OCC(x) is TRUE. Suppose αn+1(x) ̸= αn(x). Then,
2amn(x)(x) = Γ(αn(x)).

12



Proof. This will be proved by contradiction.

For clarity, we shall refer to ai(x) as ai, ki(x) as ki, ji(x) as ji, αn(x) as αn, and βn(x) as βn.

First, observe that since OCC(x) is TRUE there exists some smallest p ∈ Z+ with p > n such that
αpβp = 1 (there exist infinitely many suitable values for p, by the 4-2-1 loop).

Let us fix some positive integer x.

Given OCC(x) is TRUE, by Theorem 2, αp is an integer power of 2.

Claim 7.1. 2amn ≯ Γ(αn).

Proof. Assume 2amn > Γ(αn)

Hence, 2Γ(αn)|2amn but 2Γ(αn) ∤ αn. Therefore, αn+1 ≡ Γ(αn) (mod 2Γ(αn))).

Note that 2ai+1 > 2ai for all i ∈ Z+ (by Theorem 1). Therefore, for all q ∈ Z+ with q > n, 2amq ≡ 0
(mod 2amn+1)).

Thus, note that αq ≡ Γ(αn) (mod 2Γ(αn))), for all integers q > n.

As p > n, we have αp ≡ Γ(αn) (mod 2Γ(αn))).

Note that αp and Γ(αn) are integer powers of 2. Hence, as Γ(αn) < αp, αp ≡ 0 (mod 2Γ(αn))).
However, this contradicts αp ≡ Γ(αn) (mod 2Γ(αn))).

This concludes the proof of Claim 7.1.

Claim 7.2. 2amn ≮ Γ(αn).

Proof. Like the above claim, assume (for contradiction) that 2amn < Γ(αn).

As 2amn < Γ(αn) and Γ(αn)|αn it must be true that αn ≡ 0 (mod 2amn+1) and αn+1 ≡ 2amn

(mod 2amn+1).

Note that 2ai+1 > 2ai for all i ∈ Z+ (by Theorem 1). Therefore, for all q ∈ Z+ with q > n, 2amq ≡ 0
(mod 2amn+1).

As 3x ≡ x (mod 2), we have αq ≡ 2amn (mod 2amn+1) for all integers q > n.

Since p > n, we have αp ≡ 2amn (mod 2amn+1).

Note that αp and 2amn+1 are integer powers of 2. As 2amn+1 < αp, this implies that αp ≡ 0
(mod 2amn+1). However, this contradicts αp ≡ 2amn (mod 2amn+1).

This concludes the proof of Claim 7.2.
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By Claims 7.1 and 7.2, 2amn(x)(x) = Γ(αn(x)). This concludes the proof of Lemma 7.

Now, we prove Theorem 6, using Lemma 7.

Proof of Theorem 6. Fix some positive integer x. This statement will be proven inductively.

For clarity, we will implicitly refer to αn(x) with αn, ji(x) with ji, and mn(x) with mn.

Base Case (n = j1 + 1): αj1+1 = 3x + 2a1 . We have 2a1 = Γ(x) (by Theorem 12 in Appendix A) and
Γ(x) = Γ(3x). Hence, αj1+1 = R(m(j1+1)). This immediately gives the required result.

Inductive step: If αn = R(mn) for some n ≥ j1 + 1, then αn+1 = R(mn+1).

Proof of the inductive step. Observe, from the proof of Theorem 2, that mn+1 ∈ {mn + 1,mn}.

Case 1 (mn+1 = mn): This is immediately true for x, as αn+1 = αn (by the general rule).

Case 2 (mn+1 = mn + 1):
Observe that αn+1 = 3αn + 2amn , by the general rule.

As amn ∈ Z+ and is well-defined for n > j1, there exists some positive integer r such that αn+1 =
3αn + 2r.

Note that OCC(x) is TRUE. Hence, by Lemma 7, we see that 2r = Γ(x).

Observing that Γ(x) = Γ(3x) for all x ∈ Z+, αn+1(x) = 3αn(x) + Γ(3αn(x)) = R(mn+1)(x) (by the
inductive hypothesis).

This concludes the proof of the inductive step.

From the induction, it can be seen that αn(x) = R(mn(x))(x) for all x ∈ Z+ for which OCC(x) is TRUE.

This concludes the proof of Theorem 6.

Note that Theorem 6 (in conjunction with Theorem 2) shows that OCC(x) is TRUE implies the existence
of some positive integer pair (n, k) such that R(n)(x) = 2k (for all x ∈ Z+). The converse is also true by the
use of Theorem 5, with Γ(αi(x)) used as the values for each bi. This is valid, observing that Γ(R(x)) > Γ(3x)
for all x ∈ Z+.

In a similar manner, we also have the converse of Theorem 6 being true.

Therefore, the following are equivalent for any arbitrary positive integer x:

1. OCC(x).
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2. Existence of an increasing sequence b1, b2, ...bm of positive integers and some k ∈ Z+ such that
3(· · · 3(3(3x+ 2b1) + 2b2) + 2b3) · · · ) + 2bm = 2k.

3. Existence of a pair of positive integers (n, k) such that R(n)(x) = 2k.

Remark 18. By the nature of the 4-2-1 loop, there are actually infinite pairs of positive integers (n, k) for
which R(n)(x) = 2k (for all x ∈ Z+ such that OCC(x) is TRUE).

To summarize this section, R involves repeated alternating multiplication by 3 and addition of the largest
dividing integer power of 2. By Theorem 6 and Corollary 4, for any positive integer x, if and only if OCC(x)
is TRUE, there exists some pair (n, k) ∈ Z+ × Z+ such that R(n)(x) = 2k.

3 Binary and Changes

In order to better represent and analyze the addition of powers of 2, we are motivated to use a binary (base-2)
representation and investigate the strings of 1s and 0s.

For any positive integer x, the Collatz Conjecture is satisfied for x ∈ Z+ if and only if there exists an
ordered pair (n, k) ∈ Z+ × Z+ such that R(n)(x) = 2k.

A binary number will also be represented as a string of 1s and 0s, beginning with a 1 (leading 0s truncated).

3.1 Analysing numbers with Changes

We introduce Changes(x) of a positive integer x to analyze binary strings in an easy-to-compute manner that
can easily represent the desired output of the algorithm (if OCC(x) is TRUE, then Changes eventually goes
to 0 or 1). More specific properties we observe with Changes will also be discussed.

Definition 19 (Changes). Let dk, dk−1, d2, d1, · · · , d0 be the digits of x in base-2 (in order of decreasing
value). dk = 1, as leading 0s are omitted.

Define (γn)n∈Z≥0
such that:

γn =

{
0, if dn = dn+1

1, if dn ̸= dn+1

Then, Changes(x) =
k−1∑
i=0

γi

Corollary 8. For x ∈ Z+, Changes(x) ≤ 1 if and only if B(x) = 2k for some k ∈ Z+.
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Proof. If and only if x is of the form 111....1000....0, 111...111, or 100...000 is it true that B(x) = 2k. We
have x = 2k or x = 2k − 2m for some nonnegative integer m with m < k. Hence, Changes(x) = 0, 1.

Remark 20. The motivation behind the use of Changes is that the property works well with B and Γ (as
elaborated below) and is relatively easy to compute. Further note that powers of 2 greater than 1 will always
have 1 change, the desired output of the earlier algorithm. When R is applied, the growth rates of the trailing
string of 0s can be considered. This average growth rate when applying B, for instance, can potentially be
approximated using Changes (if we can show that this is greater than the growth rate of the main string, this
proves the conjecture).

Remark 21. We note that Changes(R(x)) = Changes(C(x)) or Changes(R(x)) = Changes(C(x)) + 1 for
any x ∈ Z+, because R(x) = C(x)2k for some k ∈ Z≥0.

Theorem 9. For all x ∈ Z+, Changes(B(x)) ≤ Changes(x).

For example, x = 10001110 has Changes(x) = 3 and Changes(B(x)) = 3.

For x = 10111, we have Changes(x) = 2 and Changes(B(x)) = 1.

Proof of Theorem 9. Consider the unique binary representation of x, which can be constructed for any x ∈ Z+:

x =

s∑
i=0

bi2
i with all bi ∈ {0, 1}, i ∈ Z≥0

Similarly, construct y with y = B(x) = x+ Γ(x):

y =

t∑
i=0

ci2
i with all ci ∈ {0, 1}, i ∈ Z≥0

Let k = log2 Γ(x). By definition of Γ(x), k ∈ Z≥0

It is apparent that bk = 1. As 2k|x, for all j ∈ Z+ with j < k, we have bj = 0.

Therefore, as y = x+ 2k, we also have cj = 0 for all j ∈ Z+ with j ≤ k.

Let d be the largest positive integer such that bd = bd−1 = · · · = bk+1 = bk = 1 and bd+1 = 0.

The value d (possibly equal to k) is well-defined, as we have bk = 1 and a finite number of digits.

Thus, cd+1 = 1, cd, ..., c0 = 0, and cd+2 = ad+2. Also, ci = bi for all j ≥ d+ 2, j ∈ Z+.

As k ̸= 0:
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Changes(x)− Changes(B(x)) =

{
1, if cd+2 = 1

0, if cd+2 = 0

Thus, Changes(B(x)) ≤ Changes(x), which concludes the proof of Theorem 9.

Remark 22. The process explored indicates the behaviour of the collapse of substrings of 1s to a single digit
(or a bit shift to the left).

Remark 23. Consider some x ∈ Z+ and apply R. Note that in R(x), we have that the string of trailing zeroes
increases in length by at least one compared to x (in other words, Γ(R(x)) > Γ(x)). However, this increase
is often more than one, as substrings of 1s collapse to single digits. Changes can potentially provide some
further insight as to this number of digits on average (i.e. lower the changes, more the digits on average, and
vice versa). In fact, if this growth rate is larger than around log2(3) on average (which is an approximation of
the growth rate of the main string), the conjecture may be proven true (possible extension of this work). Later,
more patterns regarding Changes in R(x) and A(x) will be discussed and proven.

Thus (B(x)) can either reduce or maintain the ‘changes’ present in the binary representation. Now, we attempt
to analyze the behavior of Changes when A is applied. Since R = B ◦A, this helps us evaluate
Changes(R(n)(x)) for all x, n ∈ Z+.

3.2 Upper Limit to Growth of Changes
It can be shown that there is an upper limit to increases in changes of A(x), based on the number of digits, for
all x ∈ Z+. First, we define the following:

Definition 24. For every x ∈ Z+, we use d(x) to refer to the number of digits of x in binary. In other words,
2d(x) ≤ x < 2d(x)+1.

Remark 25. Some efforts have been made to study the relationship between the values of d(x) and the Collatz
Conjecture [2]. They arrive at other interesting results that can possibly be extended using Changes.

Now, since the application of B must reduce or maintain changes, we can attempt to determine how
Changes(A(x)) relates to Changes(x), so we can therefore ultimately consider R, which is B ◦A.

Definition 26. For all k ∈ Z+, hk is defined to be the least h ∈ Z+ such that, for all x with d(x) = k:

If Changes(x) > h, then Changes(A(x)) < Changes(x).

Noting that hk ≤ k − 1 (which is a suitable value of h) for all k ∈ Z+, hk is always well-defined.
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Now, we can prove some stronger results with Changes and hk. The following theorem was first verified
computationally for all positive integers x ≤ 232 (details in the Appendix), then proven rigorously, as shown
below.

Theorem 10. For all k ∈ Z+, hk =
⌊
2k−1

3

⌋
.

The proof of the theorem will rely on the following definitions.

Definition 27. For some x ∈ Z+ (with binary representation akak−1 . . . a0), refer to some i ∈ Z+ as a
change-point if ai ̸= ai+1. Hence, the number of change points for x is Changes(x).

Definition 28. Refer to i as a mutual change-point of x, y if it is a change-point for both x and y.

Remark 29. This proof will proceed by considering A(x) = 3x as 2x + x (in binary, this is a bit shift to the
right). Therefore, consider the number of instances where changes must overlap (by Pigeonhole). By showing
that ai = ai+1 wherever this occurs (where ai are the digits), we show that Changes(A(x)) < Changes(x).

Proof of Theorem 10. Fix some x ∈ Z+, with binary expansion akak−1 . . . a0 and Changes(x) >
⌊
2k−1

3

⌋
.

Consider x+ 2x, and the set P = {i|i < k, i is a mutual change-point of x and 2x}.

Claim 10.1. For this x, if i ∈ P , i is not a change-point of 3x.

Proof of Claim 10.1. Let the binary expansion of 2x be bk+1bk . . . b1b0, with bi+1 = ai and b0 = 0.

Thus, let the binary representation of 3x be ckck−1 . . . c0.

Consider some i ∈ P .

Note that if i is a change point in x, then i+ 1 is a change point in 2x.

We have (ai, ai+1, bi, bi+1) = (0, 1, 1, 0), (1, 0, 0, 1).

With c0, c1, . . . being the digits of 3x, either ci = ci+1 = 1 (no carry) or ci = ci+1 = 0 (carry).

Therefore, if i ∈ P , i is not a change point of 3x.

This concludes the proof of Claim 10.1.

Let us assume Changes(x) >
⌊
2k−1

3

⌋
. By the pigeonhole principle, |P | ≥ 2(

⌊
2k−1

3

⌋
+ 1) − k (these

values of i are mutual change points).
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Now, we can count change points of 3x, applying Claim 10.1. Noting that 3x has k+ 1 digits, we have
Changes(3x) ≤ (k + 1)− (2(

⌊
2k−1

3

⌋
+ 1)− k) ≤

⌊
2k−1

3

⌋
.

Therefore, Changes(3x) ≤
⌊
2k−1

3

⌋
< Changes(x), when Changes(x) >

⌊
2k−1

3

⌋
.

Therefore,
⌊
2k−1

3

⌋
is a possible value for h, so hk ≤

⌊
2k−1

3

⌋
.

Claim 10.2. For every k, there exists at least one m ∈ Z+ such that we have Changes(x) =
⌊
2k−1

3

⌋
as well as Changes(A(x)) = Changes(x).

Proof of Claim 10.2. We claim that the following values of x satisfy the claim, depending on the value
of k.

i If k ≡ 0 (mod 3), let x =
i=k/3∑
i=1

23i−1. Thus x = 100100...1002.

ii If k ≡ 1 (mod 3), let x =
i=⌊k/3⌋∑

i=0

23i. Thus x = 100100...10012.

iii If k ≡ 2 (mod 3), let x =
i=⌊k/3⌋∑

i=0

23i+1. Thus x = 100100...100102

It can then be noted that for each case, Changes(x) =
⌊
2k−1

3

⌋
, directly from the definition.

For each of the cases, respectively, we can determine 3x:

i If k ≡ 0 (mod 3), we have 3x =
i=k/3∑
i=1

23i + 23i−1 = 110110...11002.

ii If k ≡ 1 (mod 3), we have 3x =
i=⌊k/3⌋∑

i=0

23i+1 + 23i = 110110...110112.

iii If k ≡ 2 (mod 3), we have 3x =
i=⌊k/3⌋∑

i=0

23i+2 + 23i+1 = 110110...1101102.

Thus, Changes(3x) = Changes(x), as required. This concludes the proof of Claim 10.2

From Claim 10.2, it must also be true that hk ≥
⌊
2k−1

3

⌋
.

Using the previous statement, equality must be true, with hk =
⌊
2k−1

3

⌋
.

This concludes the proof of Theorem 10.

Remark 30. Thus, for k-digit (in binary) values of x with more than hk changes, we have Changes(A(x)) <
Changes(x) (limiting the growth of changes as A(x) is applied).
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Remark 31. This (alongside the fact that Changes(B(x)) ≤ Changes(x)) suggests that growth in Changes

is possibly bounded as R is applied. Specifically, it is not uncommon for an increase in the Changes on ap-
plication of R to be immediately followed by a decrease in the Changes and vice versa, in part for this reason
(Theorem 10).

Analyzing this behavior may explain how all numbers appear to attain Changes(R(n)(x)) ≤ 1 (proving
this would reduce the Collatz conjecture to a much more trivial case, only for x of the form 2k − 1). Thus,
Changes could present a major step in proving the Collatz conjecture.

3.3 Extension: Distribution of Changes
Figure 1 plots Changes(x) (x-coordinate) to Changes(R(x)) (y-coordinate) for all k-digit binary x (in this
Figure, k = 24). The line corresponding to Changes(x) = Changes(R(x)) is also shown here in blue. Pixel
brightness is given by relative frequency of each configuration of x-values and y-values (normalized by number
of occurrences per column) for Figure (a). In Figure (b), the brightness of the pixels is similarly defined (also
for k = 24) although all nonzero values are assigned a base brightness of RGB (50, 50, 50) (for better visibility).

Remark 32. Notably, this distribution appears nearly uniform for arbitrarily large values of k up to 24 (the
highest tested in this article). We conjecture that this trend continues, and the distribution appears identical as
k tends to infinity.

Remark 33. Note that this is also a similar pattern as to that for Changes(x) against Changes(C(x)), because
either Changes(C(x)) = Changes(R(x)) or Changes(C(x)) = Changes(R(x))− 1.

(a) No Added Visibility (b) Added Visibility (50, 50, 50) RGB

Figure 1: Distribution of Changes(R(x)) (y-axis) vs. Changes(x) (x-axis) for k = 24

3.4 Extension: Generalizing Changes

Base-2 provides us with a number of perspectives when we consider Changes, since it allows us to analyze the
growth rate of the trailing substring of zeros. But other bases, such as 4 and 8, are insightful as well.
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Base-4 for instance, pairs up digits in the binary representation: Any substring of 101010 multiplied by
three will be mapped to 101010, which does not affect the changes in Base-4. Moreover, multiplication by
three in base-4 is equivalent to a bitwise shift followed by subtraction, and powers of two have predictable
patterns in base-4, all of which are factors making this representation desirable.

Definition 34 (k-Changes). Let dk, dk−1, d2, d1, · · · , d0 be the digits of x in base-k (in order of decreasing
value). dk ̸= 0, as leading 0s are omitted.

Define Changes(x) =
k−1∑
i=0

|di − di+1|

From the definition, the desired end state of the repeated R algorithm has 4-changes ≤ 2.

Remark 35. We see similar interesting properties when considering the 4-changes of a number. This is
because using base-4 has the same effect as grouping together adjacent bits in binary. For example, a perfectly
alternating substring of the form 101010... in base-2 will have 4-changes of 0, as will a substring of the form
111111.... This is, of course, a very specific example, but the behavior also possibly extends to more general
properties, an area of future exploration.

4 Conclusion
In conclusion, we define an alternative representation of the Collatz conjecture and prove its equivalence to the
OCC. For all x ∈ Z+ < 232, it was found that A(x) will always have fewer changes than x if Changes(x)
exceeds

⌊
2k−1

3

⌋
. This effectively bounds the potential growth in Changes. Moreover, the use of Changes

provides a property that relates well with the growth of the trailing substring of zeroes (or ν2) of values in
R-orbits. Since this growth rate’s average value for some x can determine whether OCC is true for that x,
this novel and useful method of Changes is a significant step towards a solution of the Collatz conjecture,
highlighting a new approach and potentially leading to a full proof in the future (this may also help identify
patterns in Collatz-based encryption schemes).

The main contributions of the paper are the following:

(i) Proposing a representation of the initial Collatz Conjecture as an algorithm that can be applied efficiently
in binary and involves elementary operations, where the desired final value has exactly 1 change (when
OCC(x) is TRUE).

(ii) Defining the function Changes : Z+ → Z≥0 to analyze values in the representation of the Collatz Con-
jecture (above), which loosely relates to the growth rate of the trailing string of zeroes.

(iii) Proving growth in Changes to be restricted with an upper bound, with all k-digit binary integers x with
Changes(x) > hk always decreasing in changes after applying A(x) (for all integers < 232 in Z+).

(iv) Proving a mathematical relationship for hk (verified computationally for k ≤ 32).

(v) Constructing plots of the distribution of Changes(R(x)) against Changes(x) for all k-digit binary x ∈
Z+. These distributions were generated for 2 ≤ k ≤ 24.
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Applications: The exploration of the Collatz Conjecture and its orbits has applications in various other
fields, such as Blockchain [5], Pseudo-random Number generators [7], Digital Watermarking [3], and Encryp-
tion [1, 4]. This specific research allows us to track new patterns (e.g. behaviour of Changes under A and B)
and create alternative encryption schemes based on the Collatz conjecture and similar dynamical systems.

Limitations: Though we were able to formally prove the bound in the growth of Changes using hk, we
weren’t able to mathematically show all of the observed patterns in the distribution of changes. By computing
this for larger values of k, we can verify that these patterns do indeed exist, in the distribution, and thus attempt
to prove them. Secondly, we have observed (not proven yet) that Changes always decreases as the R algorithm
is applied, but the time taken for this to happen hasn’t been considered. Lastly, the development of Changes
generally opens up a field of study and allows a multitude of patterns to be studied: this is only a minor subset
of all the patterns that exist when considering Changes under the Collatz process.

Many of these identified areas of exploration are outlined in the ’Future Work’ section.

5 Future Work
Some of the most pertinent questions are listed below. These are novel and interesting directions for further
research on the conjecture and Changes theory:

1. When R is repeatedly applied to some values, what can be said about the length of the growing sub-
string of trailing 0s (or ν2 of these values)? If this average growth rate exceeds the growth rate of the
string, this would nearly prove the conjecture. In particular, note that the growth rate of this string
is dependent on Changes. Specifically, when the changes are smaller (when there are large uniform
strings consisting of only 1s or 0s), we often see a higher growth rate (this is because each operation
of B(x) either skips past a string of 0s or collapses a long string of 1s into a single 1). For instance,
Γ(B(10011111000)) > Γ(B(100110110)).

2. Can we consider a ‘stronger’ version of changes in the form of a tuple, giving the lengths of each sub-
string consisting of only one type of digit (for example 100100111 would have (1, 2, 1, 2, 3)).

3. Can we prove that the distribution in Section 3.3 converges at higher k? What would this mean?

4. Can we work backwards? This would involve using the same algorithm of B(A(x)), but using the inverse
relations (B−1, A−1) to prove that any number can be attained with x initially being of the form 2y?

5. How does this extend for analogs of the Collatz function (perhaps of the form ax+1 instead of 3x+1)?
When this method is generalized to other bases, do the same properties still hold?

6. As detailed in Remark 35, what similar patterns emerge when plotting the 4-changes? Do they help
discriminate effectively between perfectly alternating and perfectly uniform substrings, offering a better
way bound the growth of ν2(R(n)(x)) in the Collatz conjecture?
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A Appendix
This section details some other theorems that were observed and proven throughout the research. These proofs
are more mechanical and similar to those presented earlier (and thus would confuse the structure of the paper),
but are provided here as they are required to preserve rigor.

Theorem 11. Let x be some positive integer. For all i ∈ Z+, ai(x) = ji(x)− i+ 1.

Proof. For clarity, we shall refer to ai(x) as ai, ki(x) as ki and ji(x) as ji.
Fix some i ∈ Z+. Observe that ai = kji .
For all 0 ≤ i < ji, ki+1 = ki + 1 if and only if βi ̸= βi+1 and αi = αi+1.
Let P = {i|i ∈ Z+, 0 ≤ i < ji, ki+1 ̸= ki}.
Observe that |P | = ji − i+ 1, by the definition of ji(x).
As it is always true that ki+1 ∈ {ki, ki + 1} (it always increments by 1), it is immediately true that

ai = kji = ji − i+ 1.
This concludes the proof.

Theorem 12. Let x be any positive integer. Then, we have a1(x) = log2(Γ(x)).
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Proof. For clarity, we shall refer to ai(x) as ai, ki(x) as ki and ji(x) as ji.
Observe that for all non-negative integers i < j1, αi(x)βi(x) ≡ 0 (mod 2), with αj1(x)βj1(x) ≡ 1

(mod 2).
By definition, for all non-negative integers i < j1, αi(x) = αi+1(x) = x. Therefore, βi+1(x) =

1
2βi(x).

Hence, it can be seen that 1
βj1

(x) = Γ(x).
Therefore, kj1 = a1 = log2(Γ(x)).
This concludes the proof.

Corollary 13. Let x be any positive integer. Then we have kn(x) = n−mn(x).

Proof. This can be observed by counting the number of distinct integers 0 ≤ i < n for which βi(x) ̸= βi+1(x)
(number of divisions by 2).

By Definition 3, observe that βi(x) ̸= βi+1(x) for all i /∈ S(x).

Let P = {i|i ∈ Z+, 0 ≤ i < n, i /∈ S(x)}.

By Theorem 2, note that there are exactly mn(x) positive integers i with 0 ≤ i < n for which αi(x) ̸=
αi+1(x) (in other words, for which i ∈ S(x)).

Therefore, |P | = n−mn(x), counting the divisions needed to reach βn(x), which is log2
1

βn(x)
= kn.

Hence, βn(x) =
1

2n−mn(x) and hence, we have kn(x) = n−mn(x).

This concludes the proof.

B Code
A version of the following program was run on an AMD EPYC with 96 vCPUs and 192 GiB memory,
iterating over each value of k ∈ Z+, 1 < k ≤ 32, returning hk.

The complete code can be found at:
https://github.com/AshwatPrasanna/Simulation/tree/main

B.1 Output

The output of the code is an ordered list of hk (in the previously elaborated format).

[1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15,
16, 17, 17, 18, 19, 19, 20, 21]
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